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Abstract:  

In response to the growing concerns about mangrove deforestation, recent studies have 

used various remote sensing technology like satellite imagery to measure the mangrove extent. In 

this work, we investigated the mangrove distribution in Northwestern Madagascar by using fine 

spatial imagery with pixel size as small as 3m and compared it with the result of traditional 

method based on relatively coarser Landsat data. Mangroves are an essential biodiverse 

ecosystem found along tropical and subtropical intertidal beaches, providing critical goods and 

services to coastal communities, and supporting diverse organisms. However, anthropogenic 

activities have caused the loss of mangroves in Madagascar, necessitating a new mapping 

approach utilizing the fine spatial resolution map from Planet data to create a map with advanced 

detail. The quantitative result central to this work is the new multi-date map of the Tsimipaika-

Ampasindava-Ambaro Bays (TAB) from 2020 to 2022, which provides advanced detail and 

direct comparison with the shift in local mangrove species. The classification maps are based on 

Random Forest and Maximum Likelihood algorithms, and all of them have an overall accuracy 

of over 85%. The dynamics of mangrove forests from 2020 to 2022 are quantified, with an 

12.6% loss in closed-canopy mangroves, and an 24.1% loss in open-canopy mangroves I is 

overestimated. Limitations regarding the classification model are also found in this study, 

including the overestimation of open canopy mangroves caused by the shadow and the seamline 

in the base map. This result shows the potential of using fine resolution satellite imagery in 

supervised land cover classification, and the corresponding challenges raised by the smaller pixel 

size. 

Keywords: PlanetScope; mangroves; remote sensing; Madagascar; dynamics; supervised 

classification 

 

1. Introduction 

Mangroves are widespread along tropical and subtropical intertidal beaches across the 

globe (Yancho et al., 2020). Mangrove environments are incredibly biodiverse and productive, 

contribute to minimizing climate change, and provide critical goods and services to coastal 

residents (Jones et al., 2016). They are home to a diverse range of organisms, including bacteria, 

fungi, and algae as well as invertebrates, birds, and mammals (Wilkie & Fortuna, 2003). 

Madagascar is home to 20% of the African mangroves, many of which have undergone or are 

starting to exhibit indications of substantial deterioration and deforestation (Benson et al., 2017). 

Over 20% of Madagascar's mangroves were destroyed between 1990 and 2014 to make way for 

more wood, charcoal, and areas for farming and aquaculture (Jones et al., 2014). The second-

largest mangrove ecosystem in Madagascar is found in the Tsimipaika-Ampasindava-Ambaro 

Bays (TAB), which is located on the northwest side of the country (Jones et al., 2014). These 

bays have suffered substantially from anthropogenic damage (Jones et al., 2014). In this 



research, I will develop a detailed map of the existing mangrove resources in TAB to assist local 

resource management. 

Obtaining a thorough and well-organized map is one of the most crucial elements in 

creating a robust management system for mangrove ecosystems. The most recent map of 

mangroves covering Ambanja Bay and a portion of Ambaro Bay was created by the Google 

Earth Engine Mangrove Mapping (GEEMMM) in 2000, 2010, and 2020. The GEEMMM 

provides a simple method for tracking and mapping mangrove ecosystems anywhere on the 

planet using Landsat data with a 30m pixel size (Yancho et al., 2020).  However, Landsat data 

lacks the greater spatial and temporal resolution that could be offered by the PlanetScope 

imagery, with pixel sizes as small as 3 m (Yancho et al., 2020). A new mapping is necessary to 

guarantee the correct and precise classification of the present local mangrove subtypes. To 

achieve that goal, we intended to create a new multi-date map from 2020 to 2022 that 

concentrated on the area of interest utilizing the fine spatial resolution map from Planet data, 

with each pixel size as small as 3 m. Then compare it to the classification map provided by 

GEEMMM in 2020 to evaluate the capability of using fine-resolution spatial data to run the 

mangrove subtype classification. Additionally, the planet multi-date map provides a direct 

comparison with the change in local mangrove distribution from 2020 to 2022. 

It is necessary and beneficial to update the classification and recent coverage of multiple 

mangrove species since they all have unique physical characteristics and behavioral traits. For 

instance, the closed-canopy mangrove has a higher carbon stock than the open-canopy mangrove 

(Benson et al., 2017). By getting access to the most detailed assessment of the mangrove 

ecosystem, the local populations can manage the mangrove source more effectively to increase 

its sustainability, boost living conditions, and reduce anthropogenic stressors (Benson et al., 

2017).



2. Data and Study Site Summary 

2.1. Study Area Description:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Map of Tsimipaika Bay in northwest Madagascar with sampled plot locations in intact and deforested mangrove 

areas. St. labels are surface water sampling locations. (Arias-Ortiz et al., 2020) 

Madagascar, the fifth-largest island in the world with 144 million acres, is located off the 

east coast of Africa (World Wildlife Fund, 2022). Madagascar has a tropical climate near its 

coast, a moderate temperature inland, and an arid environment in the south (World Wildlife 

Fund, 2022). Rich tropical rainforests, tropical dry forests, hills, and deserts may all be found on 

the island. The Western Indian Ocean is home to some of the largest coral reef systems and most 

extensive mangrove regions in the world, and it has more than 3,000 miles of coastline and more 

than 250 islands (World Wildlife Fund, 2022). Numerous creatures live in mangroves, including 

insects, birds, and mammals as well as bacteria, fungi, and algae (Wilkie & Fortuna, 2003). 

Additionally, mangroves can prevent erosion along the beach (Benson et al., 2017). 

Over 20% of Madagascar's mangroves were destroyed between 1990 and 2014 to make 

way for more wood, charcoal, and areas for farming and aquaculture (Jones et al., 2014). The 

second-largest mangrove ecosystem in Madagascar is found in the Tsimipaika-Ampasindava-

Ambaro Bays (TAB), which are in the country's northwest, and these bays have suffered 

substantially from anthropogenic damage (Jones et al., 2014) 



2.2. Study Area Map:  

 

Figure 2 - The map with the Binary  classification of Mangroves in Northwestern Madagascar in 2020 provided by GEEMMM 

2.3. Data summary: 

2.3.1. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM) data 

The Google Earth Engine Mangrove Mapping Methodology (GEEMMM) outcome for 

Augusts 2000, 2010, 2016, and 2020 are provided by the topical mentor. The GEEMMM offers a 

simple method for tracking and mapping mangrove ecosystems wherever they are found on the 

planet (Yancho et al., 2020). The datasets show the mangrove classifications in TAB, while the 

datasets have the coordinate of Longitude: 47.974887E to 49.110807E, and Latitude: 

13.952274S to 12.562490S. GEEMMM is based on Landsat 8 data with a 30m x 30m pixel size 

(Yancho et al., 2020). Six bands are used in the classification of mangroves: Visible, NIR, and 



SWIR bands (Yancho et al., 2020). Moreover, the classification is made by the interpretation of 

the Modified normalized difference water index (MNDWI), combined mangrove recognition 

index (CMRI), Modular mangrove recognition index (MMRI), Enhanced vegetation index 

(EVI), and Land Surface Water Index (LSWI) (Yancho et al., 2020). 

 2.3.2 The Planet data 

The Planet data for 8/23/2016 and 8/4/2020 are retrieved from: 

https://www.planet.com/explorer, which is accessed via the license of UBC Library – General 

Use, the data from 06/09/2020 to 08/04/2022 are collected by PlanetScope with a 3m pixel size. 

With a daily collection capability of 200 million km2/day, PlanetScope, operated by Planet, is a 

constellation of about 130 satellites that can picture the entire surface of the Earth every day with 

a Sun-synchronous Orbit (Planet, 2022). The coordinate of the datasets is also set to Longitude 

47.974887E to 49.110807E and Latitude: 13.952274S to 12.562490S to match the GEEMMM 

map. PlanetScope provides spatial data with an accuracy of less than 10 m RMSE at the 90th 

percentile (Planet, 2022). Moreover, the two datasets used for this research are produced by the 

PSScene instrument of PlanetScope, which has the sensor type of a four-band frame imager with 

a butcher-block filter providing blue, green, red, and NIR stripes (Planet, 2022). 

2.4. Data Summary Figures and Tables:  

 

Terrestrial 

Forest 

Mixed 

Vegetation 

- Dry 

Barren / 

Exposed 

Residual 

Water 

Closed-

Canopy 

Mangrove 

Open-

Canopy 

Mangrove 

I 

Open-

Canopy 

Mangrove 

II 

Mixed 

Vegetation 

- Healthy 

Mixed 

Vegetation -

Wet/Urban 

Terrestrial 

Forest 68 0 0 0 0 0 0 0 0 

Mixed 

Vegetation 

- Dry 0 55 0 0 0 0 0 0 0 

Barren / 

Exposed 0 0 38 0 0 0 0 0 0 

Residual 

Water 0 0 0 75 0 0 0 0 0 

Closed-

Canopy 

Mangrove 0 0 0 0 105 0 0 0 0 

Open-

Canopy 

Mangrove 

I 0 0 0 0 0 65 0 0 0 

Open-

Canopy 

Mangrove 

II 0 0 0 0 0 0 36 0 0 

https://www.planet.com/explorer


Mixed 

Vegetation 

- Healthy 0 0 0 0 0 0 0 37 0 

Mixed 

Vegetation 

- 

Wet/Urban 0 0 0 0 0 0 0 0 79 

Overall Accuracy: 1  

Table 1-The accuracy of the full classification of mangroves at TAB in 2020, provided by GEEMMM. 

 

Figure 3- The map with the full classification of Mangroves in Northwestern Madagascar in 2020 provided by GEEMMM (Note: 

No data means GEEMMM automatically ignores the data outside the mangrove ecosystem inside the Area of Interest, known as 

AOI, so No data is assigned to deep grey color to mark the border of AOI) 



 

Figure 4- The Producer's Accuracy of the full classification at TAB-produced by GEEMMM from 2000, 2010, 2016, and 2020 

 

3. Methods 

To make a direct comparison between the classification result given by Planet data with 

the Google Earth Engine Mangrove Mapping Methodology (GEEMMM), I performed the 

supervised classification on multi-date maps of Planet data with a similar method used in 

GEEMMM as outlined in Yancho et al., 2020 as the modules below.  

Module 1 – Defining the Area of Interest (AOI) and Compositing Imagery  

1.1 Define the AOI and Acquire necessary Planet data  

Several studies have shown the value of lowering the categorization extends to the bare 

minimum region because it lessens spectral confusion caused by extraneous scene elements (Giri 

et al., 2010, Jones et al., 2016). Previous research used 7 km as the buffer interval along the 

coastline based on covers the whole area of Ambanja-Ambaro Bays (AAB) including marine and 

terrestrial mangroves (Jones et al., 2016) Since current studies are all mapping based on 

relatively coarse data, i.e., Landsat 7 or 8 data, I enlarged the AOI to buffer interval of 15km 

along the coastline to make sure that all the possible areas available for mangrove growth are 

properly mapped. This ROI is used to specify the classification and dynamics extent, build image 

composites, and clip composite images and masks (such as elevation, slope, and water) (Yancho 

et al., 2020).  



The purpose of accessing Planet data is to generate multi-date maps for 2020 and 2022. 

Then, a comprehensive web search will be conducted to locate all Planet data for TAB that 

spanned one or more dates between June 2020 and August 2022. Here, Planet data from August 

are the most optimistic since the GEEMMM maps available are from August. Seasonal 

fluctuations may impact land vegetation next to mangroves, and atmospheric conditions might 

vary throughout the year; thus, the ability to target certain months is vital for producing excellent 

picture composites (Yancho et al., 2020). Moreover, to obtain the most accurate and clear spatial 

data, cloud cover higher than 30% will be filtered out (Yancho et al., 2020). Datasets were 

gathered from internet repositories where they were accessible.  

1.2 Generate multi-date maps for AOI 

Planet data explorer allows users to clip the search result to the AOI, so all data 

downloaded will be limited to the AOI, which saved us the time of filtering out unnecessary data. 

ArcGIS Pro is the main tool used for mosaicking all the acquired PlanetScope Imageries together 

to build a smooth map with no seam line.  

With masking, the classification's scope is further constrained. The GEEMMM integrates 

cloud, water, slope, and elevation masks to provide a finished AOI, in line with other mangrove 

mapping studies (Yancho et al., 2020). Cloud mask has been applied in Module 1 section 1.1, 

during data collection. The water mask is built upon NDWI < 0 (Gao, 1996), which is not as 

strong in GEEMMM because fine-resolution spatial data is inaccessible to SWIR spectral data 

hence no Modified Normalized Difference Water Index (MNDWI) data is accessible to build the 

water mask in this research (Yancho et al., 2020). In this study, the same slope and elevation will 

be applied to the AOI, which are elevation < 39 m above sea level and slope <16 % as in the 

Myanmar study in GEEMMM (Yancho et al., 2020). The output of this module includes three 

strictly masked multi-date maps based on Planet data from 2020 and 2022 covering TAB are 

prepared for the classification in the next module. 

Index Abbreviation Calculation Reference 

Normalized 

Difference Vegetation 

Index 

NDVI 
(NIR - Red)/(NIR + 

Red) 
Gandhi et al., 2015 

Normalized 

Difference Water 

Index 

NDWI 
(Green - NIR)/ 

(Green + NIR) 
McFeeters, 2013 

Combined Mangrove 

Recognition Index 
CMRI NDVI − NDWI Gupta et al., 2018 

Soil-Adjusted 

Vegetation Index 
SAVI 

1.5*(NIR − Red)/ 

(NIR + Red + 0.5) 
Huete, 1988 



Optimized Soil-

Adjusted Vegetation 

Index 

OSAVI 
(NIR − Red)/(NIR + 

Red + 0.16) 
Fern et al., 2018 

Enhanced Vegetation 

Index 
EVI 

2.5*((NIR − 

red)/(NIR + 6*Red − 

7.5*Blue + 1)) 

Matsushita et al., 

2007 

Table 2 – Spectral Indices available with 4 bands in PlanetScope – Blue, Green, Red, and NIR. The bold Index is the mangrove-

specific spectral Index (Yancho et al., 2020). 

      CMRI                          Google Satellite Image 

                               

Figure 5- Example of the appearance of the only available Mangrove-specific spectral Index CMRI in identifying mangrove 

coverage with the comparison with Google Satellite map (Gupta et al., 2018). 

Module 2 – Classification Reference Areas (CRAs), Spectral Separability, Classifications, and 

Accuracy Assessment 

2.1 Derive CRAs for Planet data 

For this study, by combining spectral indices and band combinations, I manually draw 

CRA polygons for 9 classes of landcover, while using the previous GEEMMM full classification 

result in 2020 at the same AOI as a reference. The number of CRAs used in the classification in 

2020 and 2022 are listed below in Table 2, along with the property of different classes. The 

original CRAs used to generate the GEM maps represented 3x3 Landsat pixel (or 90 x 90 m) 

areas. Each of the new CRAs in this study will be a 3x3 Planet pixel neighborhood (i.e., 9 x 9 

m). Also, to make sure I can make a direct comparison between the mangrove extent identified 

by the classification done by Planet data and GEEMMM, I also ran a simplified binary 

classification to specifically measure the extent of mangroves and non-mangroves as listed in 

Table 3 and compare the result with GEM.  

Index Class name Description 2020 2022 

Mangrove 

Exposed/Barren 



1 
Terrestrial Forest 

Forests found on land with 

Canopy >30% closed 
27 21 

2 

Mixed Vegetation – 

Dry 

Grass; Shrub; Woodland; 

Inactive (senesced) Crops; some 

exposed soil + scattered trees 

(canopy <30%) 

23 22 

3 

Barren / Exposed 

Soil; Sediment; Sand; Rock; 

includes mudflats and recently 

deforested / burnt areas  

25 25 

4 

Residual Water 

Areas missed with water 

masking (includes water-logged 

mudflats - standing water)  

11 11 

5 Closed-Canopy 

Mangrove 

Tall, mature stands;  

canopy >60% closed  
35 34 

6 

Open-Canopy 

Mangrove I 

Short-medium stands; canopy 

30-60% closed; moderately 

influenced by background 

soil/mud 

23 22 

7 
Open-Canopy 

Mangrove II 

Stunted / short stands, shrub-

dominant, very sparse; canopy 

10-30% closed 

16 16 

8 
Mixed Vegetation – 

Healthy 

Grass; Shrub; Woodland; Active 

Crops; some exposed soil + 

scattered trees (canopy <30%) 

24 18 

9 Mixed Vegetation - 

Wet/Urban 

Wet Farmlands; Swamps; Trees 

around streets/buildings 
30 30 

Total   214 199 
Table 3- Index, class name, description, and numbers of Classification Reference Areas (CRAs) used in the 2020 and 2022 Full 

classification (Yancho et al., 2020). 

Index Class name Description 2020 2022 

1 Mangrove 
Closed-Canopy Mangrove and 

Open-Canopy Mangrove I 
116 55 

2 Non-Mangrove 

Terrestrial Forest, Mixed 

Vegetation, Barren/Exposed, 

Open-Canopy Mangrove II 

179 134 

3 Water 

Areas missed with water masking 

(includes water-logged mudflats - 

standing water) 

22 11 

Total   317 200 

Table 4- Index, class name, description, and numbers of Classification Reference Areas (CRAs) used in the 2020 and 2022 

Binary classification. 



2.2 Spectral Separability 

Two charts are produced in this step to show the spectral parameters of four bands and 

nine classes of landcover. Using the minimum, maximum, and inter-quartile range for each band 

and each map class, the spectral parameters are extracted and summarized in a boxplot (Yancho 

et al., 2020). The second map is a line chart composed of the mean reflectance of classes in each 

band’s mean wavelength to emphasize relationship between the band and reflectance of 

landcover. 

 

Figure 6 - The spectral separability of all target classes as represented by CRAs across PlanetScope Blue (B1), Green (B2), Red 

(B3), and NIR (B4) bands. The set of bar and whisker plots shows the min, max, and interquartile ranges. 

 

Figure 7 - The variation of spectral separability of all target classes as represented by CRAs across PlanetScope Blue (455-515 

nm), Green (500 - 590 nm), Blue (590 - 670 nm), and NIR (780 - 860 nm) bands (Planet, 2023). The set of lines shows the mean 

reflectance. 



 2.3 Classification 

There are numerous established algorithms for classifying Landsat data to generate maps 

of mangrove distribution, such as classification and regression trees (CART), support vector 

machines (SVM), unsupervised k-means, decision trees, and maximum likelihood (ML) (Yancho 

et al., 2020). For this study, random forest (RF) and maximum likelihood (ML) are used to do 

the supervised classification, and the algorithm with better output and higher accuracy is kept. 

RF and ML are both outstanding and well-established classification algorithm that is capable of 

providing classification with high accuracy (Breiman, 2001; Asmala, A., 2012), and it had been 

used widely and successfully in a lot of previous mangroves research (Yancho et al., 2020; 

Rogers et al., 2017; Jones et al., 2016). The classification took place on R software with input of 

70% of the training dataset. The dataset includes the CRAs and the derived spectral indices from 

section 2.1, and the base map is the map at corresponding year acquired in Module 1. The output 

is composed of only one band with each pixel assigned the value of the classified landcover 

index. 

 

Figure 8 – The appearance of all targeted classes of full classification in 3m pixel PlanetScope Imagery acquired from Planet 

data in August 2022, and fine spatial resolution satellite imagery accessible in Google Earth Pro (Google, Mountain View, CA, 

USA) The False color composite 4-3-2 are shown in R-NIR, G-Red, B-Green. For Spectral Indices, Enhanced Vegetation Index 

(EVI-Matsushita et al., 2007), Normalized Difference Vegetation Index (NDVI-Gandhi et al., 2015), Normalized Difference 

Water Index (NDWI-McFeeters, 2013), Combined Mangrove Recognition Index (CMRI-Gupta et al., 2018) are used  



Figure 8 cont. 

 



2.4 Accuracy Assessment 

The substitution and error matrices of all output classifications will be produced by the 

method used by Rosenfield on R (Rosenfield, 1986). The resubstituting matrices determine the 

final land-cover class for the CRAs that were used to train the classifier (Rosenfield, 1986). The 

error matrices utilize 30% of CRAs withheld from categorization to test the accuracy of maps 

independently (Rosenfield, 1986). The confusion matrix includes Producer’s Accuracy (PA) on 

the bottom row, the User’s Accuracy on the rightmost column, and Overall Accuracy (OA) 

printed below the table. The output of this module consists of (1) full and binary classification 

maps in 2022, (2) a confusion matrix of full and binary classification in 2020 and 2022, and a 

corresponding accuracy assessment. 

Module 3 – Dynamics and comparison with GEM result 

Multi-date outputs of PlanetScope data are used to quantify dynamics. This is 

foundational to understanding long-term trends and the effectiveness of conservation efforts 

(Yancho et al., 2020). Also, a 1:8000 scaled classified map based on Planet data and Landsat 

data is used to show the advanced details included in the fine spatial resolution map. The “true 

mangrove” (closed canopy mangrove and open canopy mangrove I) extent obtained by the 

binary classification of PlanetScope data in 2020 and GEM data in 2020 is also graphed. The 

output of this module includes (1) the dynamic of mangrove extent based on multi-date maps (2) 

a comparison between GEM maps and PlanetScope maps (3) a comparison of the “true 

mangrove” extent identified by Planet map and GEM map in the same year. 

4. Result 

Module 1 – Defining the Area of Interest (AOI) and Compositing Imagery  

 Two masked multi-date maps of 2020 and 2022 composed of PlanetScope Imagery with 

3.0 m pixel size and 4 bands – Blue, Green, Red, NIR, are generated and used as input for 

classification in Module 2. 

Module 2 – Classification Reference Areas (CRAs), Spectral Separability, Classifications, and 

Accuracy Assessment 

(1) Full and binary classification maps in 2022 

 

 

 

 

 

 



 

 

Figure 9 - The Full Classification Map of Nine Mangrove Subtypes in TAB in 2022; The four focused maps are coastal streams 

with high mangrove densities to show the advanced details of the map 

Figure 9 is generated by the Maximum Likelihood Classification Algorithm by R with a 

relatively high accuracy of over 91% and kappa of 0.8684. The inset maps show the mangrove 

cover in four main coastal streams in AOI. 



 

Figure 10 - The Binary Classification Map of Mangrove Covers in TAB in 2022; The four focused maps are coastal streams with 

high mangrove densities to show the advanced details of the map 

Figure 10 is generated by the Maximum Likelihood Classification Algorithm by R with a 

relatively high accuracy of 90% and kappa of 0.8057. The inset maps show the mangrove cover 

in four main coastal streams in AOI. Overall, the result is meaningful and can be useful to update 

the current extent of subtypes of mangroves. 



(2) Accuracy assessment. 

 
Terrestrial 

Forest 

Mixed 

Vegetation 

- Dry 

Barren / 

Exposed 

Residual 

Water 

Closed-

Canopy 

Mangrove 

Open-

Canopy 

Mangrove 

I 

Open-

Canopy 

Mangrove 

II 

Mixed 

Vegetation 

- Healthy 

Mixed 

Vegetation- 

Wet/Urban 

Total 

Terrestrial 

Forest 
53 0 0 0 15 0 0 0 0 68 

Mixed 

Vegetation 

- Dry 

0 47 6 0 0 0 0 0 0 53 

Barren / 

Exposed 
0 0 75 0 0 0 0 0 0 75 

Residual 

Water 
0 0 0 27 0 0 0 0 0 27 

Closed-

Canopy 

Mangrove 

1 0 0 0 247 0 0 0 0 248 

Open-

Canopy 

Mangrove 

I 

0 0 0 0 6 65 0 0 6 77 

Open-

Canopy 

Mangrove 

II 

0 0 0 0 0 0 43 0 7 50 

Mixed 

Vegetation 

- Healthy 

3 0 0 0 0 0 0 36 7 46 

Mixed 

Vegetation 

-Wet/Urban 

3 0 0 0 0 0 0 9 50 62 

Total 60 47 81 27 268 65 43 45 70 706  

Table 5 - The Confusion Matrix of the full classification of mangroves at TAB in 2022 based on PlanetScope data 

 

Terrestrial 

Forest 

Mixed 

Vegetation 

- Dry 

Barren / 

Exposed 

Residual 

Water 

Closed-

Canopy 

Mangrove 

Open-

Canopy 

Mangrove 

I 

Open-

Canopy 

Mangrove 

II 

Mixed 

Vegetation 

- Healthy 

Mixed 

Vegetation- 

Wet/Urban 

Total UA 

Terrestrial 

Forest 

54 0 0 0 0 4 0 0 0 58 

Mixed 

Vegetation - 

Dry 

0 44 0 0 0 0 0 0 0 44 

Barren / 

Exposed 

0 2 73 0 0 0 0 0 1 76 

Residual 

Water 

0 0 0 26 0 0 0 0 1 27 

Closed-

Canopy 

Mangrove 

3 0 0 0 236 0 0 0 0 239 

Open-

Canopy 

Mangrove I 

0 0 0 0 14 62 2 0 20 98 

Open-

Canopy 

Mangrove 

II 

0 0 0 0 0 0 25 1 6 32 



Mixed 

Vegetation - 

Healthy 

2 0 0 0 0 0 9 52 0 63 

Mixed 

Vegetation - 

Wet/Urban 

0 0 6 0 9 5 6 8 46 80 

Total 59 46 79 26 259 71 42 61 74 717 
 

Table 6 - The Confusion Matrix of the full classification of mangroves at TAB in 2020 based on PlanetScope data 

 2022 2020 

 PA UA PA UA 

Terrestrial Forest 88.33% 77.94% 91.53% 93.10% 

Mixed Vegetation - Dry 100.00% 88.68% 95.65% 100.00% 

Barren / Exposed 92.59% 100.00% 92.41% 96.05% 

Residual Water 100.00% 100.00% 100.00% 96.30% 

Closed-Canopy Mangrove 92.16% 99.60% 91.12% 98.74% 

Open-Canopy Mangrove I 100.00% 84.42% 87.32% 63.27% 

Open-Canopy Mangrove II 100.00% 86.00% 59.52% 78.12% 

Mixed Vegetation - Healthy 80.00% 78.26% 85.25% 82.54% 

Mixed Vegetation - Wet/Urban 71.43% 80.65% 62.16% 57.50% 

Overall Accuracy 91.07% 86.19% 

Kappa 0.8684 0.8318 

Table 7 - The PA (Producer’s Accuracy), UA (User’s Accuracy), and Overall Accuracy and Kappa of the full classification of 

mangroves at TAB in 2020 and 2022 based on PlanetScope data 

 Mangrove Non-Mangrove Water Total 

Mangrove 339 38 0 377 

Non-Mangrove 24 316 14 354 

Water 0 0 13 13 

Total 363 354 27 744 

Table 8 - The Confusion Matrix of the binary classification of mangroves at TAB in 2022 based on PlanetScope data with 

Producer’s Accuracy (PA) and User’s Accuracy (UA) 

 Mangrove Non-Mangrove Water Total 

Mangrove 467 38 0 505 

Non-Mangrove 43 425 5 473 

Water 0 1 55 56 

Total 510 464 60 1034 

Table 9 - The Confusion Matrix of the binary classification of mangroves at TAB in 2020 based on PlanetScope data with 

Producer’s Accuracy (PA) and User’s Accuracy (UA) 

 2022 2020 
 

PA UA PA UA 

Mangrove 93% 90% 91.57% 92.48% 

Non-Mangrove 89% 89% 91.59% 89.85% 

Water 48% 100% 91.67% 98.21% 

Overall Accuracy 89.78% 91.59% 

Kappa 0.8057 0.8512 

 Table 10 - The PA (Producer’s Accuracy), UA (User’s Accuracy), and Overall Accuracy and Kappa of the Binary 

classification of mangroves at TAB in 2020 and 2022 based on PlanetScope data 

 



From Table 7 and Table 10, we can see that the accuracy assessment is relatively high, 

especially for the classes that we are most interested in, which are Closed-Canopy Mangrove, 

Open-Canopy Mangrove I, and Open-Canopy Mangrove II. 

Module 3 – Dynamics and comparison with GEM result 

(1) The dynamic of mangrove extent based on multi-date maps  

 

Figure 11a - The Dynamic of Mangrove Extent based on Binary Classification Map of 

Mangrove Covers in TAB from 2020 to 2022; The four focused maps are coastal streams with 

high mangrove densities to show the advanced details of the map 

 



 

Figure 11b - The Loss of Mangrove Extent based on Binary Classification Map of Mangrove Covers in TAB from 2020 to 2022; 

The four focused maps are coastal streams with high mangrove densities to show the advanced details of the map 



 

Figure 12 - The Dynamic of Mangrove Extent based on Full Classification Map of Mangrove Covers in TAB from 2020 to 2022 

 Figure 11a and Figure 11b shows the region where the mangrove is gained, lost, or 

persisted from 2020 to 2022. The inset maps show the dynamic of mangrove cover in four main 

coastal streams in AOI. Figure 12 shows the dynamic of total mangrove extent in the AOI from 

2020 to 2022 including all three mangrove subtypes. Closed-Canopy Mangrove and Open-

Canopy Mangrove I shows a trend of significant decreasing through time for around 9,700 ha in 

total, while Open-Canopy Mangrove II increased for 1400 ha. 

(2) Comparison between GEM maps and PlanetScope maps  

 

Figure 13 – Left - The Full Classification Map of TAB in 2020 based on Planet data; Middle - The Full Classification Map of 

TAB in 2020 generated by GEM; Right – fine spatial resolution satellite imagery accessible in Google Earth Pro (Google, 

Mountain View, CA, USA) 
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Figure 14 – The Comparison of Mangrove Extent between 2020 Landsat data and 2020 PlanetScope data 

Figure 13 shows the advanced detail level provided by the 2020 PlanetScope data 

comparing to the Landsat data. Figure 14 illustrates that even though they are mapping the same 

AOI during the same year, the variation is significant. Planet maps indicates a 3000 less hectares 

cover of Closed-Canopy Mangrove, and a 1500 hectare less Open-Canopy Mangrove II. 

However, it shows more Open-Canopy Mangrove I coverage of almost 13,000 hectares, which 

strongly implied that overestimation had occurred. 

(3) Comparison of the “true mangrove” extent identified by Planet map and GEM map in the 

same year. 

 

Figure 15 – Comparison of True Mangrove Extent of 2020 Landsat and 2020 PlanetScope; True Mangrove includes Closed-

Canopy Mangrove and Open-Canopy Mangrove I, excludes Open-Canopy Mangrove II 
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From Figure 15, I got that the 2020 Planet map shows over 11,000 hectares more “true 

mangrove” extent than the GEE map does. Again, implying the presence of overestimation in 

Open-Canopy Mangrove I in the classification in 2020 Planet map. 

5. Discussion  

5.1 Brief Summary:  

 The mangrove subtype distribution in Northwestern Madagascar is successfully identified 

using Planet data and The Google Earth Engine Mangrove Mapping (GEEMMM). The 

supervised classification maps of the AOI in 2020 and 2022 are generated with high overall 

accuracies. Fine resolution data could be used for mangrove/landcover classification, which can 

identify the exact extent and distribution of different mangrove subtypes. However, limitations 

that can strongly interrupt the interpretation of the result have to be solved before it can be 

implemented for practical use. The classification maps have shown a major overestimation issue 

of Open-Canopy Mangrove I which is the mangrove with short-medium stands and 30-60% 

closed canopy (Yancho et al., 2020), while restriction is especially obvious in the 2020 map. The 

PlanetScope based classification result identified nearly one time larger Open-Canopy Mangrove 

I coverage than the Landsat map does in 2020. This overestimation prevents us from correctly 

interpret the accurate number of mangroves in the AOI, and it also caused the mangrove loss 

from 2020 to 2022 to be overestimated. Finally, a higher determination of mangrove extent may 

mislead local natural resource management teams, leading to inappropriate policies being made. 

 Until now, most mangrove classification were based on Landsat data and have proven 

that Landsat imagery can complete the task effective and accurately (Alsaaideh et al., 2013; 

Long & Giri, 2011; Yancho et al., 2020). But this study provides a more detailed and accurate 

view of the mangrove cover in the AOI by implementing the Planet data with 10 times smaller 

pixel size than Landsat does. Overall, the findings of the study provide valuable insights into the 

changes and trends of mangrove cover in the AOI, while illustrates the potential of using fine 

resolution satellite imagery data to run the classification.  

5.2 Comparison with GEEMMM and limitations: 

            Landcover classification ran on fine spatial resolution maps are relatively new and 

challenging compared to the sophisticated and well-developed models ran on Landsat data. 

Different choice of spatial data could lead to significantly different classification process and 

outcome, and the difference between GEEMMM and planet are discussed below along with the 

corresponding limitations. 

5.2.1 Classification process 

 Planet GEEMMM 

Data Source PlanetScope Landsat 

Pixel Size 3m 30m 



Bands Collected Visible lights, NIR Visible lights, NIR, SWIR1, 

SWIR2 

Spectral Index NDVI, NDWI, EVI, SAVI, 

OSAVI, CMRI 

NDVI, NDWI, MNDWI, SAVI, 

OSAVI, EVI, LSWI, NDTI, ESBI, 

CMRI, MMRI, MRI, SMRI 

Base map seamline issue Yes No 

Table 11 – The Comparison of the mangrove classification map based on Planet data and the GEEMMM tool. The bold Index is 

the mangrove-specific spectral Index (Yancho et al., 2020) 

 First, GEEMMM used Landsat-8 data which includes the SWIR1 and SWIR2 bands, 

which are extremely useful in classifying non-forest vegetation (Yancho et al., 2020). The 

PlanetScope instruments can’t record the wavelength of SWIR, causing the limits of spectral 

index available in this study and increasing the difficulty of deriving the accurate CRAs (Planet, 

2023). Moreover, according to the confusion matrix of the 2020 Planet map in Table 5, Open-

Canopy Mangrove I is mostly confused with wet/urban vegetation and other mangroves. In 

GEEMMM, MNDWI, SWIR1, and SWIR2 are believed to be the most useful classifier of open-

canopy mangroves (Yancho et al., 2020). However, those three bands are not available in this 

study, making it hard to clearly identify the cover of mixed vegetation and mangroves, especially 

for the map in 2020. In GEEMMM, MNDWI, unavailable for Planet, is used for separation from 

forests and mangroves (Yancho et al., 2020). The relatively poor difference between NIR 

reflectance is the main classifier used to differentiate between terrestrial forests and closed-

canopy mangroves. Either field work or extra fine-resolution spectral data is needed to be used to 

define the clear boundary between those landcover subtypes and mangrove subtypes. Residual 

Water is easily distinguished from all other classes by NIR; however, it’s sometimes confused 

with the mud near the coast and misclassified as wet vegetation.  

 Secondly, the fine spatial resolution planet map restricted its temporal and spatial 

accessibility compared to the GEEMMM. After applying a strict cloud mask of 30% during data 

collection in Planet Explorer, the available satellite imagery within the AOI is further restricted, 

while the PlanetScope imagery is all separated into small pieces that need to be mosaiced 

together. Finally, the final multi-date base map is assembled by over 100 raster files from 

multiple months from June to September. This data shortage extends the time of data collection 

and causes the failure of generating the multi-date map for 2016 as planned in the original 

research proposal. Most importantly, during the mosaic process, the imagery needs to be taken in 

a very similar condition, i.e., same time of day, sun elevation, off-nadir angle, sun azimuth, and 

ground sample distance, to guarantee the smooth transition between two pieces of imagery. 

However, due to data shortage, it’s extremely hard to make sure all the transitions are smooth, 

and no seamline issues are raised. This seamline caused the sudden gap in index values within 

the base map, which leads to the misclassification in the result like the result in Figure 16. The 

eastern side of the seamline is all expected to be closed-canopy mangrove, but they are all 

misclassified as Open-Canopy mangrove I, leading to the variation of underestimating closed-

canopy mangrove extent and overestimating open-canopy mangrove I extent for the planet map 

2020. 



  

Figure 16 – Left - The Satellite map of TAB in 2020 bas ed on Planet data; Middle - The Full Classification Map of TAB in 2020 

based on Planet data; Right – fine spatial resolution satellite imagery accessible in Google Earth Pro (Google, Mountain View, 

CA, USA) 

5.2.2 Classification result 

5.2.2.1 Shadow misclassification 

Since the most updated GEEMMM classification map is in 2020, the full and binary 

classification maps of Planet 2020 and GEEMMM 2020 are compared directly with each other. 

Figure 15 illustrates that the variation is significant even though they are mapping the same AOI 

during the same year. The different mangrove extent is not only caused by the value gap due to 

the seamline in the Planet map but also caused by the confusion between the terrestrial forest 

shadow and the mangrove as shown in Figure 17 below. It overestimates the cover of Open-

Canopy mangrove I for both the full and binary classification results for the planet map. 

Moreover, typically binary classification generates a higher accuracy than the full classification 

does (Brownlee, 2020). But in this study, the accuracy assessment shows that the binary and the 

full classification have similar accuracy, and this shadow misclassification issue is the main 

driver of this similarity. After careful interpretation, this issue is also found in the Landsat 

classification maps, however, the relatively coarse spatial resolution helps in weakening the error 

since the shadows are usually smaller than the size of a single pixel. The refined resolution of the 



planet map exaggerates the problem and causes a major distinction in the result of the mangrove-

covered area.  

 

Figure 17 – Top Left – The Full Classification Map of TAB in 2020 based on Planet data; Top Right – The False color 

composite of Planet 2020 map with 4-3-2 as R-NIR, G-Red, B-Green; Bottom Left – The Binary Classification Map of TAB in 

2020 based on Planet data; Bottom Right – fine spatial resolution satellite imagery accessible in Google Earth Pro (Google, 

Mountain View, CA, USA); Yellow circle indicates an example of confusion between shadows and mangroves 

5.2.2.2 Approaches taken to solve the misclassification 

After recognizing this issue during the process of refining my model, a few new 

approaches are tried to solve this issue including adding an extra landcover class of shadow and 

deriving corresponding CRAs. This approach doesn’t work properly with poor accuracy 



outcomes of nearly <70% overall accuracy, and PA and UA also drop for the mangrove classes 

and forests. Another approach I tried is to enlarge my sample size, i.e., acquire more data for 

training/validation, which is proved to be a reliable way to refine a classification model (Verma, 

2022). However, the dataset seems to be unbalanced after doubling the total sample size from 

200 to 400, which means that it’s unable to contribute to a better accuracy result or it failed to 

add more samples to some of the landcover classes.  

5.3 Possible Improvements and future directions: 

There are a few ways that may help in creating a more accurate supervised classification 

model than this study does. Firstly, the only classification algorithms used in this project are 

Random Forest and maximum likelihood (Breiman, 2001; Asmala, A., 2012). There are other 

sophisticated and established algorithms that had been used in previous mangrove distribution 

analyses based on Landsat but not tested in this study, including regression trees (CART), 

support vector machines (SVM), unsupervised k-mean, and decision trees (Zhang et al., 2017; 

Xia et al., 2018; Mondal et al., 2017; Yancho et al., 2020). Also, the procedure of data collection 

of fine-resolution satellite images needs to be improved by eliminating the value gaps and 

guaranteeing smoothness and uniformity throughout the map. Moreover, using satellite image is 

not the only way to identify the mangrove extent. Other remote sensing approaches like LiDAR 

can also provide valuable and effective mangrove species classification (Cao et al., 2018). 

  



Reference 

Alsaaideh, B., Al-Hanbali, A., Tateishi, R., Kobayashi, T., &amp; Hoan, N. T. (2013). Mangrove 

forests mapping in the southern part of Japan using landsat ETM+ with Dem. Journal of 

Geographic Information System, 05(04), 369–377. https://doi.org/10.4236/jgis.2013.54035 

Arias-Ortiz, A., Masqué, P., Glass, L., Benson, L., Kennedy, H., Duarte, C. M., Garcia-Orellana, 

J., Benitez-Nelson, C. R., Humphries, M. S., Ratefinjanahary, I., Ravelonjatovo, J., & 

Lovelock, C. E. (2020). Losses of soil organic carbon with deforestation in mangroves of 

Madagascar. Ecosystems, 24(1), 1–19. https://doi.org/10.1007/s10021-020-00500-z  

Asmala, A. (2012). Analysis of Maximum Likelihood Classificationon Multispectral Data. 

Benson, L., Glass, L., Jones, T., Ravaoarinorotsihoarana, L., & Rakotomahazo, C. (2017). 

Mangrove carbon stocks and ecosystem cover dynamics in southwest Madagascar and the 

implications for Local Management. Forests, 8(6), 190. https://doi.org/10.3390/f8060190  

Breiman, L. (2001). Random Forest. Machine Learning, 45(1), 5–32. 

https://doi.org/10.1023/a:1010933404324 

Brownlee, J. (2020, August 19). 4 types of classification tasks in machine learning. 

MachineLearningMastery.com. Retrieved March 20, 2023, from 

https://machinelearningmastery.com/types-of-classification-in-machine-

learning/#:~:text=Binary%20classification%20refers%20to%20those,prediction%20(churn

%20or%20not). 

Cao, J., Leng, W., Liu, K., Liu, L., He, Z., &amp; Zhu, Y. (2018). Object-based mangrove 

species classification using unmanned aerial vehicle hyperspectral images and Digital 

Surface Models. Remote Sensing, 10(2), 89. https://doi.org/10.3390/rs10010089 

Fern, R. R., Foxley, E. A., Bruno, A., &amp; Morrison, M. L. (2018). Suitability of NDVI and 

osavi as estimators of green biomass and coverage in a semi-arid rangeland. Ecological 

Indicators, 94, 16–21. https://doi.org/10.1016/j.ecolind.2018.06.029 

Gandhi, G. M., Parthiban, S., Thummalu, N., &amp; Christy, A. (2015). NDVI: Vegetation 

change detection using remote sensing and GIS – A case study of vellore district. Procedia 

Computer Science, 57, 1199–1210. https://doi.org/10.1016/j.procs.2015.07.415 

Gao, B.-cai. (1996). Ndwi—a normalized difference water index for remote sensing of 

vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. 

https://doi.org/10.1016/s0034-4257(96)00067-3 

https://doi.org/10.1016/j.procs.2015.07.415
https://doi.org/10.1016/s0034-4257(96)00067-3


Google Earth Pro; Google LLC: Mountain View, CA, USA, 2022. 

Gupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., Mitra, D., 

Samal, R. N., Pattnaik, A. K., &amp; Hazra, S. (2018). An index for discrimination of 

mangroves from non-mangroves using Landsat 8 Oli imagery. MethodsX, 5, 1129–1139. 

https://doi.org/10.1016/j.mex.2018.09.011 

Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 

25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-x 

Jones, T. G., Ratsimba, H. R., Carro, A., Ravaoarinorotsihoarana, L., Glass, L., Teoh, M.,  

Benson, L., Cripps, G., Giri, C., Zafindrasilivonona, B., Raherindray, R., Andriamahenina, 

Z., & Andriamahefazafy, M. (2016). The mangroves of Ambanja and Ambaro Bays, 

northwest madagascar: Historical Dynamics, current status and deforestation mitigation 

strategy. Estuaries of the World, 67–85. https://doi.org/10.1007/978-3-319-25370-1_5 

Jones, T., Glass, L., Gandhi, S., Ravaoarinorotsihoarana, L., Carro, A., Benson, L., Ratsimba, H., 

et al. (2016). Madagascar’s Mangroves: Quantifying Nation-Wide and Ecosystem Specific 

Dynamics, and Detailed Contemporary Mapping of Distinct Ecosystems. Remote 

Sensing, 8(2), 106. MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs8020106  

Jones, T., Ratsimba, H., Ravaoarinorotsihoarana, L., Cripps, G., & Bey, A. (2014). Ecological 

Variability and Carbon Stock Estimates of  Mangrove Ecosystems in Northwestern 

Madagascar. Forests, 5(1), 177–205. MDPI AG. Retrieved from 

http://dx.doi.org/10.3390/f5010177 

Jones, T., Ratsimba, H., Ravaoarinorotsihoarana, L., Glass, L., Benson, L., Teoh, M., Carro, A., 

Cripps, G., Giri, C., Gandhi, S., Andriamahenina, Z., Rakotomanana, R., &amp; Roy, P.-F. 

(2015). The dynamics, ecological variability and estimated carbon stocks of mangroves in 

Mahajamba Bay, Madagascar. Journal of Marine Science and Engineering, 3(3), 793–820. 

https://doi.org/10.3390/jmse3030793 

Long, J. B., &amp; Giri, C. (2011). Mapping the Philippines’ mangrove forests using landsat 

imagery. Sensors, 11(3), 2972–2981. https://doi.org/10.3390/s110302972 

Matsushita, B., Yang, W., Chen, J., Onda, Y., &amp; Qiu, G. (2007). Sensitivity of the enhanced 

vegetation index (EVI) and Normalized Difference Vegetation Index (NDVI) to 

topographic effects: A case study in high-density Cypress Forest. Sensors, 7(11), 2636–

2651. https://doi.org/10.3390/s7112636 

https://doi.org/10.1016/0034-4257(88)90106-x
http://dx.doi.org/10.3390/rs8020106
http://dx.doi.org/10.3390/f5010177


McFeeters, S. (2013). Using the normalized difference water index (NDWI) within a geographic 

information system to detect swimming pools for mosquito abatement: A practical 

approach. Remote Sensing, 5(7), 3544–3561. https://doi.org/10.3390/rs5073544  

Mondal, P., Trzaska, S., & de Sherbinin, A. (2017). Landsat-derived estimates of mangrove 

extents in the Sierra Leone Coastal Landscape Complex during 1990–2016. Sensors, 18(2), 

12. https://doi.org/10.3390/s18010012  

Planet. (2022). PlanetScope. Planetscope. Retrieved October 28, 2022, from 

https://developers.planet.com/docs/data/planetscope/ 

Planet. (2023). Understanding planetscope instruments. Retrieved March 6, 2023, from 

https://developers.planet.com/docs/apis/data/sensors/ 

Rogers, K., Lymburner, L., Salum, R., Brooke, B. P., & Woodroffe, C. D. (2017). Mapping of 

mangrove extent and zonation using high and low tide composites of Landsat Data. 

Hydrobiologia, 803(1), 49–68. https://doi.org/10.1007/s10750-017-3257-5  

Rosenfield, G. H. (1986). Analysis of thematic map classification error matrices. 

Photogrammetric Engineering and Remote Sensing, 52(5), 681-686. 

Wilkie, M. L., &amp; Fortuna, S. (2003). Forest Resources Assessment Working Paper. In 

Status and trends in mangrove area extent worldwide (pp. 287). essay, Forestry Dept., 

Food and Agriculture Organization of the United Nations.  

World Wildlife Fund. (2022). Madagascar. WWF. Retrieved October 28, 2022, from 

https://www.worldwildlife.org/places/madagascar  

Xia, Q., Qin, C.-Z., Li, H., Huang, C., & Su, F.-Z. (2018). Mapping mangrove forests based on 

multi-tidal high-resolution satellite imagery. Remote Sensing, 10(9), 1343. 

https://doi.org/10.3390/rs10091343  

Yancho, J., Jones, T., Gandhi, S., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth 

Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. 

https://doi.org/10.3390/rs12223758  

Yancho, J., Jones, T., Gandhi, S., Ferster, C., Lin, A., & Glass, L. (2020). The Google Earth 

Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing, 12(22), 3758. 

MDPI AG. Retrieved from http://dx.doi.org/10.3390/rs12223758 

Zhang, X., Treitz, P. M., Chen, D., Quan, C., Shi, L., & Li, X. (2017). Mapping mangrove 

forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. 

https://developers.planet.com/docs/data/planetscope/
https://www.worldwildlife.org/places/madagascar


International Journal of Applied Earth Observation and Geoinformation, 62, 201–214. 

https://doi.org/10.1016/j.jag.2017.06.010  


